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Abstract
Climate changes and the unremitting overexploitation of groundwater in the Hamedan-Bahar Plain have raised concerns about
the sustainability of groundwater resources. The current research focused on the development of an integrated system dynamics
model to examine the long-term effects of employing five adaptation strategies on groundwater. The model was calibrated and
validated using a 21-year historical data set, and the strategies were combined into 21 management and climate change scenarios
(seven management scenarios in tandem with three climate change scenarios) to project groundwater levels for the period 2020–
2050. Future climatic conditions were projected by downscaling the data of the CanESM2 general circulation model under three
representative concentration pathway scenarios (RCP2.6, RCP4.5, and RCP8.5). By applying the business-as-usual management
scenario, the groundwater table change rates will be −0.37, −0.45, and −0.44 m/year under the RCP2.6, RCP4.5, and RCP8.5
scenarios, while the corresponding rates for the most efficient management scenario are +0.22, +0.11, and +0.13 m/year,
respectively. The strategies have been ranked according to their effectiveness as follows: (i) reducing irrigated agriculture in
favor of rainfed agriculture or fallow fields, (ii) applying an adaptive cropping pattern, (iii) developing early-maturing cultivars,
(iv) practicing deficit irrigation, and (v) enhancing irrigation efficiency. The findings indicate that the local management strat-
egies will play a greater role in future groundwater sustainability than global climate change.
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Introduction

Groundwater plays a vital role in supplying water for the irri-
gation, industrial, and municipal sectors in the Hamedan-
Bahar Plain, with an estimated 99.6% contribution to the total
water supply. Due to excessive groundwater withdrawal, the
Hamedan water authorities have enforced a prohibition on
drilling new deep-water wells since 1993. Similar manage-
ment policies are also implemented by the governments of
Pakistan, India, Egypt, and Yemen to preserve groundwater

resources (Van Steenbergen 2006). Nevertheless, the decline
in groundwater levels has continued at a rate of 0.84 m/year
(1991–2018) and well yields have decreased (RWCH 2020),
as a result, water production costs have increased (Yin et al.
2020). The same issue is addressed by Konikow and Kendy
(2005), Foster et al. (2015), Konikow (2015), and Ruybal
et al. (2019). Groundwater is connected in a sense to the cli-
mate of the region; therefore, a number of researchers have
sought to determine the impacts of climate change on ground-
water resources (Eckhardt and Ulbrich 2003; Ducci and
Tranfaglia 2008; Mizyed 2009; Earman and Dettinger 2011;
Meixner et al. 2016; Kahsay et al. 2018; Cotterman et al.
2018). However, it is still unclear as to what the impact of
climate change on groundwater resources is and how it is
likely to vary based on location, hence further research to
extend our understanding of the joint behaviors of climate
and groundwater is required (Green et al. 2011; Sutton
2019). Moreover, in some regions, reduced precipitation and
increased air temperature, as a consequence of climate change,
are likely to add more complications to the management of
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groundwater resources through the increased demand for irri-
gation water (Gondim et al. 2012; Kirby et al. 2016). The
increase in irrigation water demand caused by climate change
has been reported in several studies (Weatherhead and Knox
2000; Alcamo et al. 2007; Henriques et al. 2008; Thomas
2008; Mizyed 2009; Shahid 2011; Gohari et al. 2013; Hong
et al. 2016; Ashofteh et al. 2017; Cho et al. 2019; Oumarou
Abdoulaye et al. 2019; Kaushika et al. 2019). Conversely,
there are studies demonstrating that the changes in climate will
reduce crop water requirement (Munoz et al. 2007; Tukimat
et al. 2017; Acharjee et al. 2017). Thus, it is important to
assess the impacts of climate change at the local scale in the
Hamedan-Bahar Plain. Concerns about continuous groundwa-
ter overexploitation and the effects of climate change have led
researchers to propose, evaluate, and reassess water manage-
ment mitigation strategies (Rosenzweig et al. 2004; Arnell and
Delaney 2006; Alcamo et al. 2007; Upendram and Peterson
2007; Henriques et al. 2008; Ward and Pulido-Velazquez
2008; Portoghese et al. 2013; Philip et al. 2014; Pfeiffer and
Lin 2014; Yang et al. 2015; Nazemi et al. 2020; Singh et al.
2020). In this regard, reliable groundwater models, capable of
simulating the responses of subsurface water reservoirs to wa-
ter resource policies (Serrat-Capdevila et al. 2007; Trichakis
et al. 2009; Yoon et al. 2011; Hanson et al. 2012; Turner et al.
2015; Xu and Valocchi 2015; Meixner et al. 2016; Chang
et al. 2016; Nazarieh et al. 2018; Xiang et al. 2020), can be
effectively used in explaining the physical, and natural phe-
nomena influencing groundwater. Traditional groundwater
models, however, do not account for the impacts of human
activity on the water cycle, thereby restricting their capability
to model the response of hydrological systems to various an-
thropogenic forces (Wagener et al. 2010; Jeong and
Adamowski 2016). This leads to an event-oriented model
based on linear causal thinking, thus providing a limited rep-
resentation of interactions between system components
(Jeong and Adamowski 2016). The introduction of an
object-orientedmodeling approach based on system dynamics
concepts instead of an event-oriented modeling approach in
recent years, however, provided an edge to groundwater
modeling and analysis. Object-oriented modeling of system
dynamics uses system thinking to apprehend the interactions
and feedback mechanisms between the hydrogeological and
social subsystems; moreover, it is a holistic, integrated ap-
proach that considers the different subsystems of a water cycle
as a complex whole.

There is a growing body of literature that uses system dy-
namics (SD) as a framework for the object-oriented world-
view (Zomorodian et al. 2018). Using SD models, researchers
have been able to simulate the complexity and dynamics of
surface water and groundwater resources (Dai et al. 2013; Wu
et al. 2013; Hassanzadeh et al. 2014;Mokhtar and Aram 2017;
Ghasemi et al. 2017; Mahdavinia and Mokhtar 2019;
Pluchinotta et al. 2018; Bates et al. 2019). Additionally, to

assess the impacts of a changing climate on water resources,
many recent studies (e.g., Tromboni et al. 2014; Xiao-jun et al.
2014; Gohari et al. 2017; Qin et al. 2019) have applied the
output results of general circulation models (GCMs) to SD
models. Balali and Viaggi (2015) presented an SD model to
study the economic dynamics of Hamedan-Bahar plain
groundwater and argued that an increase in water and energy
prices would reduce groundwater extraction. Kotir et al.
(2016) developed an SD model to simulate the interaction
between the water resource, the agricultural production, and
the population sub-sectors of the Volta River Basin in Ghana.
According to the results, the development of water infrastruc-
ture provides the most benefit to the local community and is
more important than cropland expansion. Barati et al. (2019)
introduced an SDmodel to compensate for policy deficiencies
in groundwater management in Iran. The aforementioned re-
sults indicated that groundwater balance is negative and pro-
poses the strategy of increasing water efficiency through an
increase in the infiltration rate and a decrease in the extraction
rate in order to compensate for poor groundwater manage-
ment. Together, these studies indicate that SD models can be
successfully applied for water resources management and sce-
nario assessment.

As explained, there is a growing concern over groundwater
depletion and climate change impacts, which are threatening
the sustainable development of the region. What remains un-
clear, however, is which adaptation strategy is more effective
to address the concern and to what extent climate change
affects groundwater resources. Thus, in this research, we
attempted to answer these questions by (i) evaluating the prob-
able future impacts of climate change on the crop water re-
quirements and the groundwater resources of the study area,
(ii) developing an SD model to improve the understanding of
the dynamics of groundwater for sustainable water resources
management, and (iii) considering adaptation strategies, in-
cluding irrigation efficiency enhancement, deficit irrigation,
the development of early-maturing cultivars, the development
of rainfed agriculture and fallow fields, and cropping pattern
changes, to control groundwater depletion and to mitigate the
effects of climate change.

Materials and methods

Study area and groundwater data

The Hamedan-Bahar watershed is a subbasin of the Qara-
Chay river basin, extending over an area of 2463 km2. It is
located in the northeast of the Alvand Mountains in the
Hamedan province, Iran. The present study was conducted
on the main unconfined alluvial aquifer, which is part of the
Hamedan-Bahar watershed and is locally known as the
Hamedan-Bahar Plain (HBP). The plain encompasses an area
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of 483 km2 of which approximately 230 km2 is under irriga-
tion. The HBP ranges in elevation from approximately 1673
to 1871 m, with an average of 1739.25 m above mean sea
level (Fig. 1).

The groundwater data used in this study were obtained
from the Regional Water Company of Hamedan (RWCH)
who has maintained 28 observation wells since 1991 to mon-
itor monthly changes in groundwater levels and storage (Fig.
1). RWCH (2020) reported that the groundwater level in the
HBP has declined on average by 0.84 m annually from 1991
to 2018, which shows a significant downward trend at a 99%
confidence level. It was based on the aforementioned data that
the HBP was chosen as the case study of the current research
due to its key role in the production of agricultural products
and the creating of food security, which have in themselves
been affected by groundwater level decline and depletion
(Moench et al. 2003).

Climate projections

To project how future climate change may affect groundwater
resources, three Representative Concentration Pathway (RCP)
scenarios (RCP 2.6, 4.5, and 8.5) of the Fifth Assessment
Report (AR5) of the Intergovernmental Panel on Climate
Change (IPCC) were evaluated. The RCP 2.6, 4.5, and 8.5
scenarios are the projections of future radiative forcing at
levels of 2.6, 4.5, and 8.5 W/m2 by the end of the twenty-

first century respectively used in climate models (Moss et al.
2010). RCP2.6 is the most optimistic scenario, whereas
RCP8.5 is the most pessimistic scenario. In order to simulate
global climate projection based on the RCP scenarios, the
Canadian Centre for Climate Modelling and Analysis
(CCCma) has developed a general circulation model
(GCM), called the second generation Canadian Earth
System Model (CanESM2) (Arora et al. 2011). The daily
series of the CanESM2 outputs under the RCP 2.6, 4.5, and
8.5 scenarios were acquired from the CCCma website
(CCCma 2019) and were downscaled to the study area using
the Statistical DownscalingModel [SDSM,Wilby et al. 2002]
that projects future maximum air temperature (TX), minimum
air temperature (TN), and precipitation (PRCP).

Groundwater demand

Groundwater is the main source of water for irrigation, house-
hold, and industrial use, with irrigation being the primary use,
representing about 88.7% of abstractions within the study ar-
ea. Wheat, alfalfa, potatoes, barley, garlic, cucumbers, water-
melon, pumpkin, sugar beet, rapeseed, grain maize, and beans
are among the major irrigated crops cultivated in the HBP.
The net irrigation requirements (In) of the crops were calcu-
lated by subtracting the monthly effective precipitation (Pe)
from the total monthly crop evapotranspiration (ETc). Pe and
ETc were computed following the USDA-SCS and FAO-56
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procedures, respectively (Martin and Gilley 1993; Allen et al.
1998). Taking into account the yearly average irrigation effi-
ciency (Ei) depicted in Fig. 2, in the next stage, the gross
irrigation requirement (Ig) was estimated for each crop (Ig =
In / Ei). Then, the irrigation water demand for each crop was
calculated through the multiplying of Ig by the annual crop
area, and the total irrigation water demand was obtained by
adding the results together. The household and industrial wa-
ter demand data were obtained from the Hamedan water au-
thorities (RWCH and Hamedan Province Water and
Wastewater Company, i.e., HWW).

System dynamics modeling

The SD can be used to develop models for which the interac-
tions and dependencies between the components of a system
are supported (Sterman 2000). The key advantage of utilizing
the SD for the complex and interconnected groundwater sys-
tem of the HBP is that it elucidates the endogenous structure
of the system and examines how adaptation strategies can be
applied to reduce the vulnerability of groundwater to overex-
ploitation and climate change. Developing an SD model be-
gins with defining a dynamic hypothesis (a structure that ex-
plains the dynamic behavior of interest). Then, the causal loop
diagram is constructed and the model is quantified by using
stock-and-flow diagrams (Sterman 2000; Ford 2019). We pre-
sented the causal loop diagram of the groundwater system of
the HBP (Fig. 3). The system includes the main inflows and
outflows of groundwater storage and their key variables. A
positive (+) or negative (−) sign next to the arrowhead indi-
cates the direction of change in cause and effect variables. A
positive polarity relationship denotes that both variables
change in the same direction. Conversely, negative polarity
indicates that two variables change in the opposite direction.
Combinations of positive and negative causal link polarities
may form feedback loops, which are either reinforcing or
balancing (Sterman 2000). A reinforcing feedback loop is a
closed cycle in which the effect of a change in a variable

propagates through the loop and returns to the variable rein-
forcing the initial change. On the other hand, in a balancing
feedback loop, the effect of a change in a variable propagates
through the loop and returns to the variable a change opposite
to the initial one. Balancing loops display equilibrium-seeking
behavior and try to bring stocks to a desired state (Ford 2019).

As shown in Fig. 3, the causal loop diagram includes
18 variables, which are connected by 28 causal links
(arrows). The interactions generate four reinforcing and
five balancing feedback loops. For instance, B2 is a
balancing loop. In this loop, a decrease in groundwater
storage (groundwater depletion) raises concerns about
groundwater sustainability among decision-makers, and
consequently, the decision-makers decide to increase
groundwater protection measures by developing adaptive
cropping patterns that lead to a decrease in agricultural
water use. A decrease in agricultural water use de-
creases groundwater outflow (withdrawal). Finally, a de-
crease in groundwater outflow leads to an increase in
groundwater storage.

Based on the causal loop diagram (Fig. 3), the Hamedan-
Bahar System Dynamics model (HanBarSD) was developed
by Vensim DSS (Ventana Systems 2015) to simulate changes
in groundwater storage caused by natural and artificial
groundwater recharge and discharge. The model consists of
three subsystems that represent the main characteristics of the
agricultural groundwater demand and soil water balance, mu-
nicipal (urban and rural) and industrial water demands, and
groundwater storage sectors (see Figs. 9, 10, and 11 in
Appendix). The HanBarSD model has a time step of 0.0625
months. A complete description of the variables included in
the HanBarSD model is represented in Table 5 in the
Appendix.

The equation used to assess groundwater storage is the
widely accepted groundwater-balance equation (Zhang and
Kennedy 2006; Martínez-Santos and Martínez-Alfaro 2010;
Xu et al. 2010; Mohammadi et al. 2014; Yue et al. 2016)
which is calculated as:
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Ip þ I i þ Ia þ I s þ Iw

þ Gin−Gout−Qg−Wirrig−Wmuni−Wrural−Wind−Eg

¼ ΔSg ð1Þ

where Ip is the recharge from precipitation, Ii is the irrigation
return flow, Ia is the artificial groundwater recharge, Is is the
infiltration from surface flow, Iw is the seepage from domestic
and industrial wastewater,Gin is the groundwater flow into the
aquifer, Gout is the groundwater flow out of the aquifer, Qg is
the groundwater flow into the stream, Wirrig, Wmuni, Wrural,
and Wind are the groundwater withdrawal for irrigation, mu-
nicipal, rural, and industrial purposes, respectively, Eg is the
groundwater evaporation, and ΔSg is the change in ground-
water storage. All the variables in the groundwater balance
equation use values of MCM/month (million cubic meters
per month). Using the RWCH guideline (RWCH 2020), Ip,
Ia, Iw, and Eg were estimated as follows

Ip ¼ 10−3Cp⋅A⋅Pm ð2Þ
Ia ¼ Car⋅ARCPTY ð3Þ
Iw ¼ Cw⋅ Wind þWmuni þWruralð Þ ð4Þ
Eg ¼ CE⋅Epan⋅AE ð5Þ

where Cp is the dimensionless recharge coefficient of precip-
itation (Cp = 0.16), A is the area of the region under study

(km2), Pm is the amount of monthly precipitation (mm), Car

is the dimensionless artificial recharge coefficient (ranging
from 1 to 0.6 for wet and drought years), ARCPTY is the max-
imum capacity of artificial groundwater recharge in the study
region (MCM/month), Cw is the dimensionless domestic and
industrial return-flow coefficient (Cw = 0.65),CE is the dimen-
sionless evaporation coefficient of groundwater (CE = 0.02),
Epan is the amount of pan evaporation (m), and AE is the sum
of the areas wherein the depth of the groundwater table is less
than 5 m. Since all the streams in the plain are ephemeral, Is
and Qg are small and negligible (Is and Qg ≈ 0). Irrigation
return flow which plays an important role in groundwater
recharge is defined as the amount of irrigation water that
drains down beneath the root zone and was calculated using
the balance equation within the root zone as follows:

I i ¼ 10−3 ∑
n

j¼1
Pm þ I jg−El−Sr−ET j

c−ΔS j
rz

� �
⋅Aj

c ð6Þ

where j is the crop index, n is the number of crops (here n =
12), I jg is the gross irrigation requirement of the jth crop (mm),
El is the evaporation loss (mm), Sr is the surface runoff (mm),
ET j

c is the evapotranspiration of the jth crop (mm),ΔS j
rz is the

water content change in the root zone of the jth crop (mm), and
Aj
c is the area of the jth crop (km

2). The aquifer of the HBP is
bounded by 19 inflow boundaries and one outflow boundary
that are used to assess the groundwater flow into (Gin) and out
of (Gout) the aquifer based on Darcy’s law:
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Gin=out ¼ 10−6 ∑
i
T i⋅Li⋅

dh
dx

� �
i

ð7Þ

where i is the boundary index, Ti is the transmissivity of the
aquifer at the ith boundary (m2/month), Li is the length of the
ith boundary (m), and (dh/dx)i is the hydraulic gradient at the
ith boundary (m/m). By identifying the average groundwater
table drawdown (Δh), the specific yield of the aquifer (Sy),
and the area of the study region (A), groundwater storage
change (ΔSg) can be determined as per the equation below.

ΔSg ¼ Δh⋅A⋅Sy ð8Þ

Observed groundwater data for model calibration and val-
idation were collected from Oct. 1998 to Sep. 2019. The cal-
ibration and validation of the model were carried out using the
data from Oct. 1998 to Sep. 2015 and the data from Oct. 2015
to Sep. 2019, respectively. To evaluate the performance and
accuracy of the HanBarSD model, simulated results for both
the calibration and validation periods were compared with the
observed data using the three indicators of the overall good-
ness-of-fit, including the root mean-square-error (RMSE), the
Nash–Sutcliffe model efficiency coefficient (NSEC), and the
Pearson correlation coefficient (r). A perfect match of the ob-
served and simulated values of groundwater elevations is ob-
tained if NSEC is equal to one (Nash and Sutcliffe 1970).
Figure 4 shows the results of the calibration and validation.
It can be seen that the simulation results follow the same trend
as the observed groundwater elevations, indicating that the
model is well-calibrated: 65% indicates that the difference is
less than 1 m between the simulated and observed groundwa-
ter elevations; simulated groundwater elevations at 27% dif-
fered between 1 m and 2 m from the observed data. In addi-
tion, the model did not over-predict or under-predict the pat-
terns and behaviors inherent in the HBP groundwater system.
The values of RMSE, NSEC, and r were 1.12 m, 0.95, and
0.97 for the calibration period and 1.13 m, 0.98, and 0.84 for
the validation period, respectively, which also demonstrate

that the model adequately reproduces the observed values.
Hence, the HanBarSD model can be utilized to simulate
monthly groundwater level variations and project future sce-
narios in the HBP.

Policy scenarios design

Six policy scenarios were developed based on i) the key var-
iables of the model that have the most impact on the ground-
water storage; ii) the interviews conducted with water man-
agers, field experts, and stakeholders; and iii) literature re-
views to support the decision making for sustainable ground-
water resources management and agricultural development
over a period of 31 years (2020–2050). A business-as-usual
(BAU) scenario was also included as a benchmark to consider
and evaluate the effects of different mitigation and adaptation
strategies. The strategies examined in this paper are named
E0, E1, C0, C1, C2, C3, C4, FI, and DI and are defined
in Table 1. E0, C0, and FI represent the status quo of irrigation
efficiency, cropping pattern, and irrigation management that
are assumed to be constant in the future.

Furthermore, the mitigation and adaptation strategies,
including (i) irrigation efficiency improvement as shown
in Fig. 5 (applied in strategy E1), (ii) changing the
cropping pattern through a shift from more water-
intensive crops to less water-intensive crops as illustrated
in Fig. 6 (applied in strategies C1, C2, C3, and C4), (iii) the
development of early-maturing cultivars as observed in
Fig. 6 (applied in strategies C2, C3, and C4), (iv) practic-
ing deficit irrigation (applied in strategy DI), and (v) re-
ducing irrigated agriculture in favor of rainfed agriculture
or fallow fields as outlined in Fig. 6 (applied in strategies
C3 and C4), have been considered. A combination of these
management strategies has been used to define the scenar-
ios that are named C0E0FI, C0E1FI, C1E1FI, C2E1FI,
C2E1DI, C3E1DI, and C4E1DI respectively. A summary
of these scenarios is given in Table 1.
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Results and discussion

The observed and projected minimum and maximum air tem-
perature, precipitation, and reference crop evapotranspiration
(ETo) under the RCP2.6, RCP4.5, and RCP8.5 climate change
scenarios in the HBP up to the end of the twenty-first century
are depicted in Fig. 7. In this figure, trend analysis using a

regression coefficient was carried out to determine whether a
statistically significant trend exists at the 95% (*) and 99%
(**) confidence levels over the study period (2020–2050).
Figure 7 shows a significant increase in TN, TX, and ETo

under the RCP4.5 and RCP8.5 scenarios, with the greatest
rates of change in the highest-emission scenario (i.e.,
RCP8.5), which is expected, due to the higher rate of increase

Table 1 Summary of management strategies and scenarios

Scenario Description of strategies

Irrigation efficiency (E) Cropping pattern (C) Irrigation
management
(FI or DI)

C0E0FI1 It is considered that Ei is constant and equal to 57.02%, therefore there
is no improvement in irrigation efficiency hence this strategy is
named E0.

The cropping pattern remains constant at the
average of the last five crop years (2015–2019).
This strategy is named C0 and is shown in Fig.
6-C0.

Full irrigation
(FI)

C0E1FI Enhancement in irrigation efficiency is achieved by improving
irrigation practice through annual growth rates of 1.00%, 0.75%,
and 0.50% in Ei during the 2020s, 2030s, and 2040s, respectively.
Changes in Ei are depicted in Fig. 5 and are equivalent to a
cumulative total change of 22.56% inEi. This leads to themaximum
attainable irrigation efficiency (Solomon 1988; Ali 2011).

C0 FI

C1E1FI E1 Changes in cropping pattern are classified as C1
and these include (i) refraining from growing
highly water-intensive crops, including alfalfa,
pumpkin, and sugar beet, within the next ten
years (2020–2029), (ii) to develop alternative
crops such as corn to replace alfalfa, (iii) to re-
duce water-intensive crops, including wheat and
garlic, (iv) to encourage raising new, less
water-intensive crops, including rapeseed and
beans, and (v) to encourage raising less
water-intensive crops, including barley and po-
tatoes. More details are given in Fig. 6-C1.

FI

C2E1FI E1 In the C2 strategy, two new, early-maturing culti-
vars of potato and corn (EM. Potato and EM.
Corn) have been developed as replacements for
common potatoes and corn cultivars within the
next ten years (2020–2029). The cropping pat-
tern changes in C2 are the same as in C1 (Fig.
6-C2).

FI

C2E1DI E1 C2 Deficit
irrigation
(DI)

C3E1DI E1 In the C3 strategy, in addition to the mitigation and
adaptation strategies that have been considered
in C1 and C2, irrigated agriculture is linearly
reduced by 30% during the 2030s and 2040s and
the irrigated agriculture area will be 161 km2 in
2050 (Fig. 6-C3).

DI

C4E1DI E1 The cropping pattern changes are similar to C3, but
reducing irrigated agriculture by 40% is
implemented during the 2030s and 2040s and the
irrigated agriculture area will be 138 km2 in
2050. These changes are named C4 and are
shown in Fig. 6-C4.

DI

1 C0E0FI is the business-as-usual scenario including population growth
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in the concentration of atmospheric greenhouse gases in the
RCP8.5 scenario (Oliveira et al. 2017; Andrade et al. 2021).
Whereas, under the RCP2.6 scenario, the changes in these
variables are not significant. Furthermore, the results indicate
that there is no significant trend in the total annual precipita-
t ion. Regarding the increase in temperature and

evapotranspiration, agricultural, household, and industrial wa-
ter demands will increase throughout the region, which in
itself will put more pressure on the groundwater resources.
In addition to Fig. 7, the mean values of TN, TX, PRCP,
and ETo, during the observed and projected periods, as well
as the changes in the mean values of the projected weather
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Fig. 6 The cropping pattern changes (C0–C4) implemented in the scenarios between 2020 and 2050 (EM. stands for early-maturing)
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variables in relation to the historical observed values are pre-
sented in Table 2. The results show that the average annual
minimum and maximum temperatures, along with the average
total annual precipitation and evapotranspiration in the period
2020–2050 will increase by 1.87 °C, 1.05 °C, 52.5 mm, and
168.2 mm under RCP2.6; 1.99 °C, 1.75 °C, 54.7 mm, and
214.4 mm under RCP4.5; and 2.46 °C, 2.56 °C, 62.0 mm,
and 261.1 mm under RCP8.5, respectively. The minimum
and maximum variations in the projected weather variables
are attributable to the low-emission mitigation scenario
(RCP2.6) and the high-emission scenario (RCP8.5).

Policy scenario analysis

Having validated the HanBarSD model with the observed
groundwater elevation data, the model was used for projecting
groundwater level variations for six groundwater management

scenarios (i.e., C0E1FI, C1E1FI, C2E1FI, C2E1DI, C3E1DI,
and C4E1DI) and the BAU scenario (i.e., C0E0FI) under three
climate change scenarios (i.e., RCP2.6, RCP4.5, and
RCP8.5). The results are presented in Fig. 8 and Table 3.
The figure shows that the greatest decline in the groundwater
level will be 11.6, 13.9, and 13.5 m under the RCP2.6-
C0E0FI, RCP4.5-C0E0FI, and RCP8.5-C0E0FI scenarios, re-
spectively. Accordingly, at the end of the 31-year projection
period, under the RCP4.5-C0E0FI and RCP8.5-C0E0FI sce-
narios, the groundwater levels will approximately be parallel
to each other and lower than that of the RCP2.6-C0E0FI sce-
nario. The elevation of the groundwater table under the
RCP8.5-C0E0FI scenario is a little higher than that of the
RCP4.5-C0E0FI scenario, which can be attributed to the
higher groundwater recharge from precipitation under the
RCP8.5 scenario. In the most optimistic scenario, i.e.,
RCP2.6-C4E1DI, the elevation of the groundwater table will

Table 2 Mean values of weather
variables during the observed and
projected periods in the HBP

Variable Observed (1977–2019) Projected (2020–2050)

RCP2.6 (Change) RCP4.5 (Change) RCP8.5 (Change)

TN (°C) 3.72 5.59 (+1.87) 5.71 (+1.99) 6.18 (+2.46)

TX (°C) 19.65 20.70 (+1.05) 21.40 (+1.75) 22.21 (+2.56)

PRCP (mm) 316.1 368.6 (+52.5) 370.8 (+54.7) 378.1 (+62.0)

ETo (mm) 1251.6 1419.8 (+168.2) 1466.0 (+214.4) 1512.7 (+261.1)
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rise by 6.81 m by the end of the projection period (Table 3).
By comparing the groundwater levels in the first and last year
of the projection period, it can be deduced that the changes
under the RCP2.6-C3E1DI, RCP2.6-C4E1DI, RCP4.5-
C3E1DI, RCP4.5-C4E1DI, RCP8.5-C3E1DI, and RCP8.5-
C4E1DI scenarios will be positive and equal to 4.21, 6.81,
0.83, 3.38, 1.31, and 3.88 m, respectively. However, in the
other scenarios, the groundwater levels are expected to decline
between −2.12 and −13.89 m by 2050 (Table 3). Considering
the projected groundwater elevations in 2050, the effect of
each strategy on groundwater level rise has been summarized
in Table 4. From the table, it can be inferred that implementing
an irrigation efficiency enhancement plan, practicing deficit
irrigation, choosing an adaptive cropping pattern, developing
early-maturing cultivars, and developing rainfed agriculture
by 30% and 40% strategies will cause the groundwater table
to rise by 1.03, 2.01, 3.42, 2.44, 6.21, and 8.79 m, respective-
ly. Based on the results (Table 4), the most useful strategies to

protect groundwater resources, in order of effectiveness, are
(i) reducing irrigated agriculture in favor of rainfed agriculture
or fallow fields, (ii) applying an adaptive cropping pattern,
(iii) developing early-maturing cultivars, (iv) practicing deficit
irrigation, and (v) enhancing irrigation efficiency. Reducing
irrigated area is, therefore, the most effective way of stabiliz-
ing groundwater levels, which has been identified by Deines
et al. (2019) as the first conservation strategy that can lead to
reduced water use. The results show that increases in irrigation
efficiency have the least effect on groundwater protection.
Despite the small positive effect of enhancing irrigation effi-
ciency on groundwater resources, this strategy is recommend-
ed to reduce evaporation losses, save energy by decreasing
groundwater pumping, and minimize groundwater contami-
nation caused by nitrate leaching. As a result of Fig. 8, all the
strategies must be applied to protect groundwater resources
and to raise the groundwater table in the HBP. A comparison
of the effects of the management and climate change scenarios
on the HBP groundwater resources showed that the control of
climate change will cause a 1.9–2.3 m increase in the ground-
water table while the improvement in the management strate-
gies will raise the groundwater table up by 18.4 m. Therefore,
applying the current BAU management strategy will result in
more groundwater depletion than climate change effects do.
This finding is in agreement with the results obtained by
Fujihara et al. (2008) and Tzabiras et al. (2016).

Conclusion

In this research, we developed a system dynamics model
for the HBP (HanBarSD) to examine the long-term effects
of applying five adaptive strategies on improving ground-
water resources, and to investigate the impacts of climate
change on water demand. The HanBarSD was used to
project the outcomes of six different policy scenarios
and the BAU scenario from 2020 to 2050. The results
showed that all the strategies must be combined to pre-
vent groundwater depletion. Under the most optimistic
scenario (RCP2.6-C4E1DI), the groundwater table will
rise up to 6.81 m by 2050. On the other hand, under the
BAU management scenario (C0E0FI) and the RCP4.5 cli-
mate scenario, the decline in the groundwater table will be
about −13.89 m by 2050. The climate change model
showed that higher temperatures and evapotranspiration
for both the RCP4.5 and RCP8.5 scenarios will increase
the water demand, leading to more pressure on the
groundwater resources. Under the most optimistic climate
change scenario (i.e., RCP2.6), the groundwater table will
be approximately 2.3 and 1.9 m higher than that of the
RCP4.5 and RCP8.5 climate scenarios by 2050. The re-
sults also showed that the current BAU management
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Fig. 8 Projected groundwater elevations between water-years 2020 and
2050 under the different management and climate scenarios in the HBP
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poses much more serious threats to groundwater resources
sustainability than climate change impacts.

In conclusion, the results demonstrate that by applyingmit-
igation and adaptation strategies, the HBP groundwater re-
sources can be protected from overexploitation and depletion.
In this regard, the top three strategies are i) reducing irrigated
area, ii) applying an adaptive cropping pattern, and iii) devel-
oping early-maturing cultivars. Furthermore, using the model

as a learning tool, the researchers were able to improve the
understanding of the long-term dynamics of the HBP ground-
water system. The researchers believe that assessing the ef-
fects of other adaptation strategies, such as the development of
new and alternative sources of water supply, the expansion of
recycled water production, and the development of new
drought-resistant crops, on groundwater resources could pro-
vide interesting results in the future studies.

Table 3 Projected groundwater
in 2020 and 2050 and the effect of
the management scenarios on the
groundwater elevation change

Scenarios Mean groundwater
elevation in water
year (m)

Change
(m)

Changewith respect to the BAU scenario
(m)

2020 2050

RCP2.6-C0E0FI (BAU
scenario)

1718.30 1706.70 −11.59 -

RCP2.6-C0E1FI 1718.30 1707.77 −10.52 1.07

RCP2.6-C1E1FI 1718.30 1711.50 −6.80 4.80

RCP2.6-C2E1FI 1718.30 1714.10 −4.20 7.40

RCP2.6-C2E1DI 1718.30 1716.17 −2.12 9.47

RCP2.6-C3E1DI 1718.30 1722.50 +4.21 15.80

RCP2.6-C4E1DI 1718.30 1725.10 +6.81 18.40

RCP4.5-C0E0FI (BAU
scenario)

1718.24 1704.35 −13.89 -

RCP4.5-C0E1FI 1718.24 1705.35 −12.89 1.00

RCP4.5-C1E1FI 1718.24 1708.61 −9.63 4.26

RCP4.5-C2E1FI 1718.24 1710.95 −7.29 6.60

RCP4.5-C2E1DI 1718.24 1712.93 −5.31 8.58

RCP4.5-C3E1DI 1718.24 1719.07 +0.83 14.72

RCP4.5-C4E1DI 1718.24 1721.62 +3.38 17.27

RCP8.5-C0E0FI (BAU
scenario)

1718.62 1705.12 −13.51 -

RCP8.5-C0E1FI 1718.62 1706.13 −12.49 1.01

RCP8.5-C1E1FI 1718.62 1709.39 −9.23 4.28

RCP8.5-C2E1FI 1718.62 1711.77 −6.86 6.65

RCP8.5-C2E1DI 1718.62 1713.75 −4.87 8.64

RCP8.5-C3E1DI 1718.62 1719.93 +1.31 14.81

RCP8.5-C4E1DI 1718.62 1722.50 +3.88 17.38

Table 4 The effect of the
strategies on groundwater level
rise under the climate change
scenarios, between water years
2020 and 2050 in the HBP

Strategy Groundwater level rise (m)

RCP2.6 RCP4.5 RCP8.5 Mean

Irrigation efficiency enhancement 1.07 1.00 1.01 1.03

Deficit irrigation 2.07 1.98 1.99 2.01

Early-maturing cultivars development 2.60 2.34 2.37 2.44

Adaptive cropping pattern 3.73 3.26 3.26 3.42

Reducing irrigated area by 30% 6.33 6.14 6.18 6.21

Reducing irrigated area by 40% 8.93 8.69 8.75 8.79
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Fig. 11 Stock-and-flow diagram of the groundwater storage subsystem

Table 5 The variables of the HanBarSD model

Variable type Variable name Description Unit
Subsystem

Stock

Agricultural groundwater demands and
soil water balance

Cumulative Agri. water
demand

Cumulative water demand of agriculture sector MCM

SWC Soil water content mm/m

Seasonal ETcp The total amount of potential evapotranspiration for a crop
over an entire growing season

mm

Seasonal ETc The total amount of actual evapotranspiration for a crop over
an entire growing season

mm

Municipal and industrial water
demands

Urban population Total urban population Persons

Rural population Total rural population Persons

Labor stock Total Labor force population Persons

Cumulative domestic water
use

The cumulative volume of water consumed by urban and rural
households

MCM

Cumulative industrial water
use

The cumulative volume of water consumed by industrial
plants

MCM

Cumulative domestic and
industrial water use

Cumulative domestic water use + Cumulative industrial water
use

MCM

Groundwater storage Groundwater The volume of water in the groundwater reservoir of the HBP MCM

Flow

Agricultural groundwater demands and
soil water balance

ETcp start Determines the start of the growing season for the potential
evapotranspiration of the crops

mm/month

ETcp end Determines the end of the growing season for the potential
evapotranspiration of the crops

mm/month

ETc start Determines the start of the growing season for the actual
evapotranspiration of the crops

mm/month

ETc end Determines the end of the growing season for the actual
evapotranspiration of the crops

mm/month

Soil in Water inflow rate to the root zone mm/m/month

Soil out Water depletion rate from the root zone mm/m/month

Municipal and industrial water
demands

Increase in urban POP Net increase in urban population % per year

Increase in rural POP Net increase in rural population % per year

Labor force increase Net labor force increase % per year
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Table 5 (continued)

Variable type Variable name Description Unit
Subsystem

Groundwater storage GW in Groundwater inflow MCM/month

GW out Groundwater outflow MCM/month

Auxiliary variable

Agricultural groundwater demand and
soil water balance

ETcp Potential crop evapotranspiration mm/month

ETc Actual crop evapotranspiration mm/month

ETc ratio Seasonal ETc / Seasonal ETcp -

Daily ETcp Daily potential evapotranspiration of the crops mm/day

Irrigation frequency The number of days between two consecutive irrigation
events

days

Ks Water stress coefficients -

Monthly TAW Total available water in a month mm/m

RAW Readily available water mm/m

TAW − RAW Subtract RAW from TAW mm/m

Kr Evaporation reduction coefficient -

Wrel Relative soil water content mm/m

Es Soil water evaporation mm/m/month

Growing season length Length of the growing season for the crops days

Repeat growing season Repeats the growing season pattern of the crops days

FINAL TIME The time at which the simulation ends month

Time Internally defined simulation time month

Crop water use The volume of water needed to be applied for the crops MCM/month

Agri. water demand Total agricultural water demand MCM/month

Agri. water use Total agricultural water use MCM/month

Agri. water shortage Subtract Agri. water demand from Agri. water use MCM/month

Gross Irrig. requirement (crop) Gross irrigation requirement of the crops MCM/month

Eia Applied irrigation efficiency %

Effective rain Effective rainfall mm/month

Net Irrig. Req. Net irrigation requirement mm/month

Gross Irrig. Req. The total gross irrigation requirement MCM/month

Seepage Deep percolation mm/month

Municipal and industrial water
demands

Urban POP growth Rate of urban population growth %

Rural POP growth The monthly growth rate of the rural population %

Labor force growth The monthly growth rate of labor force growth %

Urban water use per capita Mean urban water use per capita m3/month

Urban water use Total urban water use MCM/month

Rural water use per capita Mean rural water use per capita m3/month

Rural water use Total rural water use MCM/month

Domestic water use Total urban and rural water use MCM/month

Industrial water use Total industrial water use MCM/month

Domestic and industrial water
use

Domestic water use + Industrial water use MCM/month

Groundwater storage GWT Groundwater table depth m

GWi Groundwater hydraulic gradient m/m

GW flow to Kabudarahang Groundwater outflow to Kabudarahang Plain MCM/month

E_GWT Evaporation from the groundwater table MCM/month

PRCP recharge Direct recharge from precipitation to the HBP MCM/month

Ici Irrigation return flows for crops MCM/month

Ii The sum of the irrigation return flows for crops MCM/month
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